EQUIVALENT FRACTIONS

PROBLEMS

To see the answer, pass your mouse over the colored area.
To cover the answer again, click "Refresh" ("Reload").
Do the problem yourself first!

 1.  Write three fractions that are equivalent to 58 .
 For example: 1016 1524 2032

Multiply both 5 and 8 by the same number.

2.  Write the missing term.

 4.   a) 23 = 8 12 4.   b) 45 = 1215 4.   c) 34 = 1520 4.   d) 29 = 1254 4.   e) 78 = 3540 4.   f) 56 = 3542 4.   g) 27 = 8 28 4.   h) 516 = 1548 4.   i) 34 = 2432 4.   j) 23 = 2030 4.   k) 35 = 2745 4.   l) 35 = 1220 2.   m) 79 = 4254 2.   n) 23 = 1421 2.   o) 89 = 5663 2.   p) 67 = 4856
 3 Convert both fractions to a common denominator.
 3. (What common denominator should you choose?) Since the given denominators have no common divisors, choose the product of the denominators.
 3 a) 12 and 35
 3.  a) 12 = 5 10 , 35 = 6 10 .
 3 b) 23 and 34
 3.  b) 23 = 8 12 , 34 = 9 12 .
 3 c) 57 and 49
 3.  b) 57 = 4563 , 49 = 2863 .

4.  How can we know when two fractions are equivalent?

Their numerators and denominators are in the same ratio.

5.  Write the missing term.

 2.   a) 515 = 7 21 2.   b) 416 = 3 12 2.   c) 321 = 4 28 2.   d) 840 = 3 15 2.   e) 654 = 4 36 2.   f) 12 = 6 12 2.   g) 12 = 48 2.   h) 12 = 5 10 2.   i) 13 = 4 12 2.   j) 14 = 3 12 2.   k) 15 = 6 30 2.   l) 216 = 3 24 2.   m) 735 = 4  20 2.   n) 816 = 5 10 2.   o) 330 = 7 70 2.   p) 545 = 2 18

6.  Reduce each fraction to lowest terms.

 16. a) 812 = 23 16.  b) 36 = 12 16.  c) 515 = 13 16.  d) 1624 = 23
 16. e) 2163 = 13 16.  f) 2035 = 47 16.  g) 1254 = 29 16.  h) 648 = 18
 16. i) 6381 = 79 16.  j) 1560 = 14 16.  k) 1636 = 49 16.  l) 2472 = 13
 16. m) 3040 = 34 16.  n) 600900 = 23 16.  o) 50 400 = 18 16.  p) 1800  12,000 = 3 20
 16. q) 33 = 1 16.  r) 1818 = 1 16.  s) 527 527 = 1 16.  t) 12,308  12,308 = 1

7.  Write as a mixed number.

 17. a) 12 8 = 1½ 17. b) 34 6 = 5 23 17. c) 3616 = 2¼ 17. d) 2820 = 1 25

Continue on to the next section.

or

Return to the previous section.

Table of Contents

Please make a donation to keep TheMathPage online.
Even \$1 will help.

Copyright © 2017 Lawrence Spector

Questions or comments?

E-mail:  themathpage@nyc.rr.com