Radicals - Rational and irrational numbers: Level 2 The definition of the square root radical
Example 4. Solve for
In other words, if we call In this equation --
Problem 7. Solve for To see the answer, pass your mouse over the colored area.
The definition of the square root radical Here is the formal rule that implicitly defines the symbol : A square root radical multiplied by itself
Problem 8. Evaluate the following.
Example 6. Multiply out ( + ). That is, distribute .
Problem 9. Following the previous Example, multiply out ( + ).
Rationalizing a denominator Rationalizing a denominator is a simple technique for changing an irrational denominator into a rational one. We simply multiply the radical by itself. But then we must multiply the numerator by the same number.
The denominator is now rational.
reciprocal of the denominator. Finally, rationalizing the denominator simplifies the task of evaluating the fraction. Since we know that , for example, is approximately 1
Problem 11. Show each of the following by transforming the left-hand side.
Real numbers A real number is distinguished from an imaginary or complex number. It is what we call any rational or irrational number. It is a number we expect to find on the number line. It is a number we need for measuring. The real numbers are the subject of calculus and of scientific measurement. A real variable is a variable that takes on real values.
Problem 12. Let For example, 3.1, 3.14, , , . Problem 13. If the square root is to be a real number, then the radicand may not be negative. (There is no such real number, for example, as .) If is to be real, then we must have (If you are not viewing this page with Internet Explorer 6 or Firefox 3, then your browser may not be able to display the symbol ≥, "is greater than or equal to"; or ≤, "is less than or equal to.") Therefore, what values are permitted to the real variable a)
b)
1 + c)
1 − d)
Next Lesson: Simplifying radicals Please make a donation to keep TheMathPage online. Copyright © 2020 Lawrence Spector Questions or comments? E-mail: themathpage@yandex.com |