11 ## EVALUATING πThe ratio of a chord to the diameter π IS THE RATIO of the circumference of a circle to the diameter. (Topic 9.) But how shall we compare a curved line to a straight line? The answer is that we cannot do it directly. We can only relate straight lines to straight lines, and so we must approximate a curved line by a series of straight lines. In this case, we approximate the circle by an inscribed polygon or a circumscribed polygon. The perimeter of the inscribed polygon will be less than the circumference of the circle, while the perimeter of the circumscribed polygon will be greater. We can then form the ratio of each perimeter to the diameter. That will produce a lesser and a greater approximation to π. Clearly, the more sides we take, the better the value. An inscribed polygon Each side of an inscribed polygon is a chord of the circle. The perimeter of the polygon -- the approximation to the circumference -- will be the sum of all the chords. From the following theorem we are able to evaluate π: The ratio of a chord of a circle to the diameter
We say that a chord subtends -- literally, stretches under -- a central angle. Thus if AB is a chord of a circle, and CD the diameter, then
Before proving this theorem, let us give some examples. Example 1. A chord subtends a central angle of 100°. What ratio has the chord to the diameter?
This means that the chord is 766 thousandths -- or a bit more than three fourths -- of the diameter. Problem 1. What ratio to the diameter has a chord that subtends a central angle of 60°? To see the answer, pass your mouse over the colored area.
This chord is half of the diameter. This chord is equal to the radius! Example 2. A regular polygon of 8 sides is inscribed in a circle. What central angle does each side subtend? What ratio has each side to the diameter? What ratio has the entire perimeter to the diameter?
Next,
As for the entire perimeter, it is made up of 8 such chords. Therefore, the ratio of the perimeter to the diameter will be 8 × .383 = 3.064 This is an approximation to π For,
The approximation is not a very good one, because we have approximated the circumference with a polygon of only 8 sides. Problem 2. Let a regular polygon of 20 sides be inscribed in a circle. a) Each side subtends what central angle? 360° ÷ 20 = 18° b) What ratio has each side to the diameter? (Table)
The entire perimeter, is made up of 20 such chords. Therefore, the ratio of the perimeter to the diameter will be 20 × .156 = 3.12 We can generalize what we have done as follows. Let us inscribe in a circle a polygon of
Therefore,
Finally, since
We shall use this below to prove that the area A of circle is
Here is the proof of the ratio of a chord to the diameter. Theorem. Let E be the center of a circle with chord AB, diameter CD, and central angle AEB, which we will call θ; then
Draw EF so that it bisects angle θ. Then EF is also the perpendicular bisector of AB, because EA and EB are radii, and so triangle AEB is isosceles (Theorem 2). Therefore,
Now,
This is what we set out to prove. In the previous Lesson, we saw how to know that area by the method of rearranging. Here, we will prove the formula by means of inscribed polygons. Theorem. The area A of a circle is
where
Let us divide the polygon into Now the area of each triangle is half the base A We will now express both
Since the side of each isosceles triangle is the radius
or,
Also, in each isosceles triangle,
so that
Upon substituting lines (3) and (2) into line (1), we have
That is the area of one of the triangles. The area A of the entire circle is approximated by all
But we have seen that
Therefore, finally,
Suppose now that the number of sides
will be indistinguishable from 0°. We will have A = π But cos 0° = 1. Therefore, A = π
This is what we wanted to prove. When Next Topic: Angles and their measurement Copyright © 2019 Lawrence Spector Questions or comments? E-mail: themathpage@yandex.com Private tutoring available. |